User's Manual
Table Of Contents
- Introduction
- What's New
- What's New in Release J.3
- Avalon CL Transducer System
- Support For Use of Maternal Cableless Measurement Devices
- Maternal Temperature Measurement
- Manually Entered Maternal Temperature Measurements
- New Design for the User Interface
- New SmartKeys
- Coincidence INOP Tone
- Increased Internal Back-up Memory
- USB Interface
- Flexible Nurse Call Interface
- DHCP Support
- Data Export Support
- NBP Configurable Measurement Sequence
- Alarms Enhancements
- Alarm Reminder
- Auto Free
- What's New in Release G.0
- Battery Option and Patient Transport Improvements for the Avalon FM20 and FM30
- Maternal Pulse from Toco MP Transducer
- Non Stress Test (NST) Analysis as Clinical Decision Support (CDS) Application
- FHR Sound Source
- FHR Numeric Display
- Improved FHR and DFHR Label Concept
- New SmartKeys
- Trace Separation On/Off Operation
- NBP
- Alarms
- CCV INOP
- New Demographic Fields
- Recorder
- Stored Data Recording
- FHR Sound Volume
- Avalon CTS
- What's New in Release J.3
- Basic Operation
- Supported Measurements
- Avalon FM20 and FM30
- Avalon FM40 and FM50
- Avalon CL Transducer System
- Getting to Know Your Avalon FM20/FM30
- Getting to Know Your Avalon FM40/FM50
- Transducers
- Getting to Know Your Avalon CL
- Cableless Transducers
- Radio Range of CL Transducers
- The CL transducers have a operating range around the base station of at least 70 m in the line of sight. Obstructions as walls, metal doors, elevators and other environment structures can lead to signal loss. The Tele symbol indicator and the Tele In...
- Connector Cap for the CL Toco+ MP Transducer
- Cableless Transducer LED Indication
- CL Transducer Battery
- Audio Signal CL Transducers
- CL Pods
- Operating and Navigating
- Operating Modes
- Automatic Screen Layouts
- Settings
- Preparing to Monitor
- Switching the Monitor to Standby
- After Monitoring
- Disconnecting from Power
- Power On/Power Off Behavior
- Monitoring After a Power Failure
- Troubleshooting
- FM20/30 Battery Option
- Alarms
- Patient Alarms and INOPs
- Admitting and Discharging
- Non-Stress Test Timer
- Non-Stress Test Report
- Cross-Channel Verification (CCV)
- Monitoring FHR and FMP Using Ultrasound
- Technical Description
- Limitations of the Technology
- Misidentification of MHR as FHR
- What You Need
- Cableless Monitoring - Important Considerations
- Preparing to Monitor
- Selecting Fetal Heart Sound
- Changing the Fetal Heart Sound Volume
- Fetal Movement Profile
- Troubleshooting
- Additional Information
- Testing Ultrasound Transducers
- Monitoring Twin FHRs
- Monitoring Triple FHRs
- Fetal Heart Rate Alarms
- Monitoring Uterine Activity Externally
- Monitoring Uterine Activity Internally
- Monitoring FHR Using DECG
- Monitoring Noninvasive Blood Pressure
- Introducing the Oscillometric Noninvasive Blood Pressure Measurement
- Preparing to Measure Noninvasive Blood Pressure
- Starting and Stopping Measurements
- Enabling Automatic Mode and Setting Repetition Time
- Enabling Sequence Mode and Setting Up The Sequence
- Choosing the Alarm Source
- Assisting Venous Puncture
- Calibrating NBP
- Troubleshooting
- Monitoring Maternal Temperature
- Monitoring SpO2
- Monitoring Maternal Heart / Pulse Rate
- Printing the ECG Waveform
- Paper Save Mode for Maternal Measurements
- Recovering Data
- Care and Cleaning
- Maintenance
- Accessories and Supplies
- Specifications and Standards Compliance
- Environmental Specifications
- Physical Specifications
- Performance Specifications
- Recorder Specifications
- Compatible External Displays: FM40/FM50 Only
- Manufacturer's Information
- Trademark Acknowledgment
- Regulatory and Standards Compliance
- Safety and Performance
- Safety Tests Fetal Monitor
- Electromagnetic Compatibility (EMC)
- EMC Testing
- Reducing Electromagnetic Interference
- System Characteristics
- Electromagnetic Emissions and Immunity
- Electromagnetic Immunity
- Radio Compliance Notice
- Finding Recommended Separation Distances
- Recommended Separation Distances from Other RF Equipment
- Radio Frequency Radiation Exposure Information
- Environment
- Monitoring After a Loss of Power
- ESU, MRI and Defibrillation
- Cardiac Pacemakers and Electrical Stimulators
- Fast Transients/Bursts
- Symbols on the System
- Default Settings Appendix
5 Alarms
109
5Alarms
The alarm information here applies to all measurements. Measurement-specific alarm information is
contained in the sections on individual measurements.
The fetal monitor has two different types of alarm: patient alarms and INOPs.
Patient Alarms
Red and yellow alarms are patient alarms. A red alarm indicates high priority, such as a potentially life
threatening situation (for example, SpO
2
below the desaturation alarm limit). A yellow alarm indicates
a lower priority alarm (for example, a fetal heart rate alarm limit violation).
INOPs
INOPs are technical alarms. They indicate that the monitor cannot measure and therefore not detect
critical conditions reliably. If an INOP interrupts monitoring and alarm detection (for example,
MECG
Leads Off
), the monitor places a question mark in place of the measurement numeric and sounds an
audible tone. INOPs without this tone indicate that there may be a problem with the reliability of the
data, but that monitoring is not interrupted.
Most INOPs are light blue, however there are a small number of INOPs which are always yellow or
red to indicate a severity corresponding to red and yellow alarms. The following INOPs can also be
configured as red or yellow INOPs to provide a severity indication:
•
MECG Leads Off
• <SpO₂ Label> No Pulse
• Tele Disconnected
• Battery Empty / Replace Battery
Alarm Delays
There is a delay between a physiological event at the measurement site and the corresponding alarm
indication at the monitor. This delay has two components:
• The general measurement delay time is the time between the occurrence of the
physiological event and when this event is represented by the displayed numerical values.
This delay depends on the algorithmic processing and, for certain measurements (SpO
2
, EEG and
BIS), on the configured averaging time. The longer the averaging time is configured, the longer it
takes until the numerical values reflect the physiological event.
• The time between the displayed numerical values exceeding an alarm limit and the alarm
indication on the monitor. This delay is the sum of the alarm delay configured for the specific
measurement plus the system alarm delay. The system alarm delay is the processing time the
system needs for any alarm on the monitor to be indicated after the measurement has triggered the
alarm. See the performance specifications in “Specifications and Standards Compliance” on
page 269 for the system alarm delay specification.
Multiple Alarms
If more than one alarm is active, the alarm messages are shown in the alarm status area in succession.
An arrow symbol next to the alarm message informs you that more than one message is active.
The monitor sounds an audible indicator for the highest priority alarm. If more than one alarm
condition is active in the same measurement, the monitor announces the most severe.