Datasheet

TPS2010, TPS2011, TPS2012, TPS2013
POWER-DISTRIBUTION
SLVS097A – DECEMBER 1994 – REVISED AUGUST 1995
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
detailed description (continued)
driver
The driver controls the gate voltage of the power switch. To limit large current surges and reduce the associated
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range instead of the
microsecond or nanosecond range for a standard FET.
enable (EN)
A logic high on the EN input turns off the power switch and the bias for the charge pump, driver, and other circuitry
to reduce the supply current to less than 10 µA. A logic zero input restores bias to the drive and control circuits
and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.
current sense
A sense FET monitors the current supplied to the load. The sense FET is a much more efficient way to measure
current than conventional resistance methods. When an overload or short circuit is encountered, the
current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and drives
the power FET into its linear region, which switches the output into a constant current mode and simply holds
the current constant while varying the voltage on the load.
thermal sense
An internal thermal-sense circuit shuts the power switch off when the junction temperature rises to
approximately 180°C. Hysteresis is built into the thermal sense, and after the device has cooled approximately
20 degrees, the switch turns back on. The switch continues to cycle off and on until the fault is removed.
TPS201xY chip information
This chip, when properly assembled, displays characteristics similar to the TPS201xC. Thermal compression
or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.