Datasheet

DAC3484
SLAS749C MARCH 2011REVISED AUGUST 2012
www.ti.com
DEFINITION OF SPECIFICATIONS
Adjacent Carrier Leakage Ratio (ACLR): Defined for a 3.84Mcps 3GPP W-CDMA input signal measured in a
3.84MHz bandwidth at a 5MHz offset from the carrier with a 12dB peak-to-average ratio.
Analog and Digital Power Supply Rejection Ratio (APSSR, DPSSR): Defined as the percentage error in the
ratio of the delta IOUT and delta supply voltage normalized with respect to the ideal IOUT current.
Differential Nonlinearity (DNL): Defined as the variation in analog output associated with an ideal 1 LSB
change in the digital input code.
Gain Drift: Defined as the maximum change in gain, in terms of ppm of full-scale range (FSR) per °C, from the
value at ambient (25°C) to values over the full operating temperature range.
Gain Error: Defined as the percentage error (in FSR%) for the ratio between the measured full-scale output
current and the ideal full-scale output current.
Integral Nonlinearity (INL): Defined as the maximum deviation of the actual analog output from the ideal output,
determined by a straight line drawn from zero scale to full scale.
Intermodulation Distortion (IMD3): The two-tone IMD3 is defined as the ratio (in dBc) of the 3rd-order
intermodulation distortion product to either fundamental output tone.
Offset Drift: Defined as the maximum change in DC offset, in terms of ppm of full-scale range (FSR) per °C,
from the value at ambient (25°C) to values over the full operating temperature range.
Offset Error: Defined as the percentage error (in FSR%) for the ratio between the measured mid-scale output
current and the ideal mid-scale output current.
Output Compliance Range: Defined as the minimum and maximum allowable voltage at the output of the
current-output DAC. Exceeding this limit may result reduced reliability of the device or adversely affecting
distortion performance.
Reference Voltage Drift: Defined as the maximum change of the reference voltage in ppm per degree Celsius
from value at ambient (25°C) to values over the full operating temperature range.
Spurious Free Dynamic Range (SFDR): Defined as the difference (in dBc) between the peak amplitude of the
output signal and the peak spurious signal within the first Nyquist zone.
Noise Spectral Density (NSD): Defined as the difference of power (indBc) between the output tone signal
power and the noise floor of 1Hz bandwidth within the first Nyquist zone.
SERIAL INTERFACE
The serial port of the DAC3484 is a flexible serial interface which communicates with industry standard
microprocessors and microcontrollers. The interface provides read/write access to all registers used to define the
operating modes of DAC3484. It is compatible with most synchronous transfer formats and can be configured as
a 3 or 4 pin interface by sif4_ena in register config2. In both configurations, SCLK is the serial interface input
clock and SDENB is serial interface enable. For 3 pin configuration, SDIO is a bidirectional pin for both data in
and data out. For 4 pin configuration, SDIO is data in only and SDO is data out only. Data is input into the device
with the rising edge of SCLK. Data is output from the device on the falling edge of SCLK.
Each read/write operation is framed by signal SDENB (Serial Data Enable Bar) asserted low. The first frame byte
is the instruction cycle which identifies the following data transfer cycle as read or write as well as the 7-bit
address to be accessed. Table 1 indicates the function of each bit in the instruction cycle and is followed by a
detailed description of each bit. The data transfer cycle consists of two bytes.
Table 1. Instruction Byte of the Serial Interface
MSB LSB
Bit 7 6 5 4 3 2 1 0
Description R/W A6 A5 A4 A3 A2 A1 A0
26 Submit Documentation Feedback Copyright © 2011–2012, Texas Instruments Incorporated
Product Folder Links: DAC3484