Datasheet
13
ATtiny25/45/85 [DATASHEET]
2586Q–AVR–08/2013
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.
When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pend-
ing interrupts, as shown in this example.
4.8.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock
cycles the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle
period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and
this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction
is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the
selected sleep mode.
Assembly Code Example
in r16, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write
sbi EECR, EEPE
out SREG, r16 ; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);
SREG = cSREG; /* restore SREG value (I-bit) */
Assembly Code Example
sei ; set Global Interrupt Enable
sleep; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt(s)
C Code Example
_SEI(); /* set Global Interrupt Enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */